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Abstract 
A two-colored digraph D(2) is a digraph D whose each of its 
arcs is colored by either red or blue. A two-colored digraph 
D(2) is primitive provided that there is a positive integer h+k 
such that any pair of vertices in D(2) can be  connected by a 
walk of length h+k consisting of h red arcs and k blue arcs. 
The smallest of such positive integer h+k is the exponent of 
D(2) and is denoted by exp(D(2)). The exponent of a vertex v 
in a two-colored digraph D(2) is the smallest positive integer 
s+t such that for each vertex x in D(2) there is a walk of 
length s+t consisting of s red arcs and t blue arcs. In this 
paper we discuss the vertex exponents of a primitive two-
colored extremal ministrong digraph D(2) on n vertices. If D(2)

 
has one blue arc, we show that the exponents of vertices of 
D(2) lie on [n2 – 5n + 8, n2 – 3n + 1]. If D(2) has two blue arcs, 
we show that the exponents of vertices in D(2) lie on [n2 – 4n 
+ 4, n2 – n]. 
 
Keywords: extremal ministrong digraph, two-colored 

digraphs, primitive digraphs, exponents, 
vertex exponents  

 
1. Introduction 
A digraph D is strongly connected provided that for each 
pair of vertices u and v in D there is a walk from u to v and a 
walk from v to u.  A strongly connected digraph D is said to 
be ministrong if each digraph obtained from D by mean of 
removal any arc of D will result in a not strongly connected 
digraph. A strongly connected digraph D is primitive 
provided there exists a positive integer l such that for every 
pair of not necessarily distinct vertices u and v in D there is a 
walk from u to v of length l . The smallest of such positive 
integer l  is the exponent of D and is denoted by exp(D). 
Exponents of primitive digraphs have been studied 
extensively because of their importance not only in graph 
theory but also in matrix theory and their application in 
communications [23]. Results on exponents of digraph can 
be found in [3]. By an extremal ministrong digraph on n 
vertices we mean a primitive ministrong digraph with 
exponent equals n2 – 4n + 6. 
Brualdi and Liu [1] generalized the concept of exponent of a 
primitive digraph by defining more local exponents as 

follows. Let D be a primitive digraph, the exponent of a 
vertex v in D is the smallest positive integer t such there is a 
walk of length t from the vertex v to all vertices in D. The 
exponent of a vertex v is denoted by ( )D vγ . Let the vertices 
v1, v2, …, vn of the digraph D be ordered such that we have 

1 2( ) ( ) ( )D D D nv v vγ γ γ≤ ≤ ≤K . For 1≤  k ≤  n, the number 
( )D kvγ is called the first kth generalized exponent of D and is 

denoted by ( )D kγ . The readers interested in the vertex 
exponents of primitive digraphs should consult the literatures 
(see [4,10,12,13,15]). We mention here that the number 

( )D kγ has a nice interpretation in the model a memory less 
communication networks (see [4]).  
By a two-colored digraph D(2) (a 2-digraph for short) we 
mean a digraph D such that each of its arcs is colored by 
either red or blue but not both colors. Let s and t be 
nonnegative integers. By an (s,t)-walk we mean a walk of 
length s + t consisting of s red arcs and t blue arcs. For a 
walk w in D(2) we respectively define r(w) and b(w) to be the 
number of red and blue arcs contained in w. The vector 

( )
( )

r w
b w
⎡ ⎤
⎢ ⎥
⎣ ⎦

is called the composition of the walk w and 

( ) ( ) ( )w r w b w= +l  is the length of the walk w. A 2-digraph 
D(2) is primitive provided there are nonnegative integers h 
and k such that for each pair of vertices u and v in D(2) there 
is an (h,k)-walk from u to v. The smallest positive integer h + 
k over all such nonnegative integers h and k is the exponent 
of D(2) and denoted by exp(D(2)). The study of exponents of 
two-colored digraph is initiated by Shader and Suwilo [14]. 
Since then many researches on exponents of two-colored 
digraphs have been conducted (see [6, 8, 9, 16-18]). 
Let D(2) be a strongly connected 2-digraph and let C = {C1, 
C2, …, Cq} be the set of all cycles in D(2). Define a cycle 
matrix of D(2) to be a 2 by q matrix 

1 2

1 2

( ) ( ) ( )
,               (1)

( ) ( ) ( )
q

q

r C r C r C
M

b C b C b C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

L

L
 

that is M is a matrix such that its ith column is the 
composition of the ith cycle Ci, i = 1, 2, …, q. If the rank of 
M is 1, the content of M is defined to be 0, and otherwise the 
content of M is the greatest common divisor of the 2 by 2 
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minors of M. The following result, due to Fornasini and 
Valcher [5], gives algebraic characterization of a primitive 2-
digraph. 
 
Theorem 1.1: [5] Let D(2) be a strongly connected 2-digraph 
with at least one arc of each color. Suppose the cycle matrix 
of D(2) is M. The 2-digraph D(2) is primitive if and only if the 
content of M is 1. 
 
By an underlying digraph of a 2-digraph D(2) is a digraph D 
obtained from D(2) by ignoring the color of each arc in D(2). 
Let D(2) be a primitive 2-digraph on n vertices v1, v2, …, vn. 
Gao and Shao [7] extended the definition of vertex exponent 
of a digraph into vertex exponent of a 2-digraph. For a 
vertex u in D(2) the vertex exponent of u is the smallest 
positive integer s + t such that for each vertex v in D(2) there 
is a (s,t)-walk from u to v. Let the vertices v1, v2, …, vn of 
D(2) be ordered such that  

(2) (2) (2)1 2( ) ( ) ( ).nD D Dv v vγ γ γ≤ ≤ ≤L  
For 1 ≤ k ≤ n, the number ( 2) ( )kD

vγ  is called the first kth 
generalized exponent of D(2) and is denoted by (2) ( )

D
kγ . Gao 

and Shao [7] give a formula for vertex exponent of primitive 
2-digraph of Wielandt type on n vertices. That is a two-
colored digraph whose underlying digraph is the primitive 
digraph consisting of the cycle v1→ vn →  vn – 1 → … → v2 
→  v1 of length n and the arc v1→  vn – 1. For a primitive two-
colored Wielandt digraphs  W(2) they show that:  (i) 

(2)
2( ) 2 1,kW v n n k jγ = − + − +   if W(2) has only one blue arc 

of the form vj →  vj – 1 where 2 1,j n≤ ≤ −  (ii) 

(2)
2( ) 2 ,kW v n n kγ = − +   if W(2) has two blue arcs of the 

form v1 →  vn – 1 and v1 →  vn and (iii) 
(2)

2( ) 2 ,kW v n n kγ = − +   if W(2) has two blue arcs v1 →  vn – 1 

and vn →  vn – 1.   
This paper discusses the vertex exponents of two-colored 
extremal ministrong digraphs on n vertices. In Section 2 we 
discuss previous works on exponents of primitive extremal 
ministrong digraphs. In Section 3 we discuss a way to set up 
a lower bound and an upper bound for vertex exponent of a 
2-digraphs consisting of two cycles. In Section 4 we present 
our main result on vertex exponent of two-colored extremal 
ministrong digraphs. We note that this paper is a completed 
version of [19]. 
 
2. Previous works on exponents and vertex exponents  of 

ministrong digraph 
In this section we discuss some results on exponents and 
vertex exponents of ministrong digraphs and ministrong 2-
digraphs. We begin with the following result of Brualdi and 
Ross [2] on exponents of primitive ministrong digraphs. 
 
Theorem 2.1: [2] Let D be a ministrong digraph on n 
vertices v1, v2, …, vn. Then 

6≤ exp(D) ≤ n2 – 4n + 6. 
The upper bound is achieved if and only if D is isomorphic 
to the digraph consisting the cycle  

v1→ vn-2 →  vn-3 → … → v2 →  v1 

and the path v1→ vn→ vn-1→ vn-3 
 

Since then many researches on exponents and generalized 
exponents of primitive ministrong digraph have been 
conducted. Literatures on exponents an vertex exponents of 
primitive ministrong digraphs can be found for examples in 
[11, 20-23].  
Let D be the extremal primitive ministrong digraph on n 
vertices and let D(2) be a 2-digraph obtained by coloring the 
arcs of D with red or blue. We note that the 2-digraph D(2) 
consists of two cycles, namely the cycle 

C1 : v1→ vn→ vn-1→ vn-3→ vn-4→ …→ v2→ v1 
of length n – 1 and the cycle 

C2 : v1→ vn-2→ vn-3→ vn-4→ …→ v2→ v1 
of length n – 2. Lee and Yang [9] show that the two-colored 
extremal ministrong digraph D(2) is primitive if and only if 
the cycle matrix of D(2) is  

1 2

1 2

( ) ( ) 2 3
.                (2)

( ) ( ) 1 1
r C r C n n

M
b C b C

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

The following theorem of Lee and Yang [9] gives a bound 
for exponents of 2-digraphs whose underlying digraph is the 
extremal ministrong digraph on n vertices with exponent n2 – 
4n + 6. 
 
Theorem 2.2: [9] Let D be the primitive ministrong digraph 
on n vertices with exponent n2 – 4n + 6. Let D(2) be a 
primitive 2-digraph whose underlying digraph is D. Then 

2n2 – 8n + 7 ≤  exp(D(2)) ≤  2n2 – 5n + 3 
 

3. Bounds for Vertex Exponents of two-colored digraphs 
In this section we discuss a way to set up a lower and an 
upper bound for vertex exponents of primitive 2-digraphs. 
We start by discussing an upper bound. For the rest of the 
paper we assume that the exponent of the vertex vk is 
obtained using (s, t)-walks. 
 
Proposition 3.1 Let D(2) be a primitive 2-digraph and let vk 
be a vertex in D(2). If for some nonnegative integers s and t 
and some paths pki from vk to vi, i = 1, 2, …, n the system of 
equations 

,

,

( )
x                               (3)

( )
k i

k i

r p s
M

b p t
⎡ ⎤ ⎡ ⎤

+ =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

has a nonnegative integer solution, then the exponent 
( 2) ( )kD v s tγ ≤ +  

Proof: Let M be a 2 by t cycle matrix of D(2) as in equation 
(1). For every vertex vi, i = 1, 2, …, n in D(2) we claim that 
there is an (s, t)-walk from vk to vi. Let x be the solution of 
the system (3). Since x = (x1, x2, …, xq)T is a nonnegative 
integer vector, the walk that starts at vk, moves to vi along the 
path pki and along the way moves xj times around the cycle 
Cj for j = 1, 2, …, q is an (s, t)-walk from vk  to vi. By 
definition of vertex exponent we have that ( 2) ( ) .kD v s tγ ≤ +  

In the next proposition, we describe an upper bound of 
vertex exponent of any vertex in a 2-digraph D(2) in term of 
the vertex exponent of a specified vertex. In Proposition 3.2 
the notion d(vk, v) means the length of the shortest path from 
vk to v. 
 
Proposition 3.2 Let D(2) be a primitive 2-digraph with 
vertices v1, v2, …, vn, and let v be a vertex in D(2) with 
exponent (2) ( )

D
vγ . Then for each vertex vk we have 

(2) (2)( ) ( ) ( , ).k kD Dv v d v vγ γ≤ +  



Vertex Exponents of Two-Colored Primitive Extremal Ministrong Digraphs 

Copyright @ 2011/gjto 

168

Proof: Let pk,v be the (r(pk,v), b(pk,v))-path from vk to v with 
length d(vk, v). Since the exponent of the vertex v is ( 2) ( )

D
vγ , 

there is an (s, t)-walk of length (2) ( )
D

v s tγ = +  from vertex v 
to each vertex vi, j  = 1, 2, …, n. This implies for each vertex 
vk in D(2) there is an (s+r(pk,v), t+b(pk,v))-walk from the 
vertex vk to each vertex vj, j = 1, 2, …, n, namely the walk 
that starts at vk, moves to v along the (r(pk,v), b(pk,v))-path and 
then moves to vj by using an (s, t)-walk from v to vj. Now, 
we conclude (2) (2)( ) ( ) ( , ).k kD Dv v d v vγ γ≤ +    
The following lemma presents a way to set up a lower bound 
for vertex exponent of a primitive 2-digraph consisting of 
two cycles. 
 
Lemma 3.3 Let D(2) be a primitive 2-digraph consisting two 

cycles with cycle matrix 1 2

1 2

( ) ( )
( ) ( )

r C r C
M

b C b C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. Let vk be any 

vertex in D(2) and suppose there is an (s, t)-walk from vk to 
each vertex vi. in D(2) with s u

M
t v
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 for nonnegative 

integers u and v. Then 1 ( )
( )

ki

ki

r pu
M

b pv
− ⎡ ⎤⎡ ⎤

≥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 for some path pki 

from vk to vi. 
 
Proof: Let pki be a path from vk to vi. Since every walk can be 
decomposed into cycles and a path, we have 

( )
x+                                 (4)

( )
ki

ki

r ps
M

b pt
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

For some nonnegative integer vector x; We note that since 
D(2) is primitive, M is an invertible matrix. By considering 

s u
M

t v
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 and equation (4) we now have 

1 ( )
0                           (5)

( )
ki

ki

r pu
x M

b pv
− ⎡ ⎤⎡ ⎤

= − ≥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Hence from (5) we have  
1 ( )

( )
ki

ki

r pu
M

b pv
− ⎡ ⎤⎡ ⎤

≥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

and the lemma holds. 
As a direct consequence of Lemma 3.3 we have the 
following lower bound for vertex exponents. 
 
Corollary 3.4 Let D(2)be a primitive two-colored digraph 
consisting of two cycles C1 and C2. Let vk be a vertex in D(2) 
and let pk,i and pk,j be path from vk to vi and from vk to vi with 
i ≠ j. If u0 = b(C2)r(pk,i) – r(C2)b(pk,i) ≥ 0 and v0 = r(C1)b(pk,j) 
– b(C1)r(pk,j) ≥ 0, then (2) 1 0 2 0( ) ( ) ( ) .kD v C u C vγ ≥ +l l  

 
Proof: We assume that the exponent of vk can be achieved by 
an (s, t)-walk. Then, s u

M
t v
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 for some nonnegative 

integers u and v. By Lemma 3.3 we have 
2 , 2 ,1

1 , 1 ,

( ) ( ) ( ) ( )( )
  (6)

( ) ( ) ( ) ( )( )
k i k iki

k i k iki

b C r p r C b pr pu
M

r C b p b C r pr pv
− −⎡ ⎤⎡ ⎤⎡ ⎤

≥ = ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

for any path pk,i from vertex vk to vertex vi, i = 1, 2, …, n. 
Therefore from (6) we find that 

0

0
.                       (7)

us u
M M

vt v
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ≥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Equation (7) implies  

( ) ( )
( 2 )

1 1 0 2 2 0

1 0 2 0

( )

            ( ) ( ) ( ) ( )
              = ( ) ( ) .

kD v s t

r C b C u r C b C v
C u C v

γ = +

≥ + + +

+l l

 

 
4. Main Results 
This section discusses vertex exponents of primitive 
ministrong 2-digraph D(2) whose underlying digraph is the 
primitive extremal ministrong digraph in Theorem 2.1. Since 
D(2) is primitive, by Equation (2) the ministrong 2-digraph 
D(2) has at most two blue arcs. We split our discussion into 
two cases, the case when D(2) has one blue arc and the case 
when D(2) has two blue arcs.  
We first consider the case where D(2) has only one blue arc. 
Notice that when D(2) has only one blue arc, the blue arc 
must lie on the path pn-3,1 of length 4n − from vertex vn – 3 to 
vertex v1. By Corollary 3.4, the exponent of a vertex depends 
heavily on how large the expression u0 = b(C2)r(pk,i) – 
r(C2)b(pk,i) and v0 = r(C1)b(pk,j) – b(C1)r(pk,j) could be. We 
note that u0 will be large when the path pki from vk to vi 
contains as many red arcs as possible but as few blue arcs as 
possible. Similarly v0 will be large when the path pkj from vk 
to vj contains as many blue arcs as possible but as few red 
arcs as possible.  
 
Theorem 4.1 Let D the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 – 4n + 6 and let D(2) be 
a primitive 2-digraph whose underlying digraph is D. If the 
blue arc of D(2) is the arc vj → vj-1, 2 ≤  j ≤  n – 3, then 

( 2)

2

2

4 4 ,     1 2
( )

4 3 ,     1 .
kD

n n k j if k n
v

n n k j if n k n
γ

⎧ − + + − ≤ ≤ −⎪= ⎨
− + + − − ≤ ≤⎪⎩

 

Proof: By equation (2) we have l (C1) = n – 1 l (C2) = n – 2. 
We show the lower bound for (2) ( )kD

vγ . For k = 1, 2, …, n 
we consider paths from vk to vj and from vk to vj-1 and then 
we use Corollary 3.4 to set up the lower bound. We split the 
proof into three cases. 
We consider the case where 1 ≤  k ≤  j – 1. There are two 
paths from vk to vi, they are an (n + k – 2 – j, 0)-path and an 
(n + k – 1 – j, 0)-path. Using the (n + k – 2 – j, 0)-path we 
have u0 = n + k – 2 – j and using the (n + k – 1 – j, 0)-path 
we find u0 = n + k – 1 – j. We conclude that u0 = n + k – 2 – 
j. There are two paths from vk to vj-1. They are an (n + k – 2 – 
j, 1)-path and an (n + k – 1 – j, 1)-path. Using the (n + k – 2 
– j, 1)-path we have v0 = j – k and using (n + k – 1 – j, 1)-
path we find v0 = j – k – 1. We conclude that v0 = j – k – 1. 
Corollary 3.4 implies that 

22 5 7 .         (8)
1 3

s n k j n n k jM
t j k n

⎡ ⎤+ − −⎡ ⎤ ⎡ ⎤ − + + −
≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

From (8) we have 
(2)

2( ) 4 4                      (9)kD v n n k jγ ≥ − + + +  

for 1 1.k j≤ ≤ −   
We now assume that j ≤  k ≤  n – 2. There is only one path 
from vk  to vj, namely the (k – j, 0)-path. Using this path we 
have u0 = k – j. There is only one path from vk  to vj-1, namely 
the (k – j, 1)-path from vk to vj-1. Using this path we find v0 = 
n – k + j – 2. By Corollary 3.4  
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(2)

2

( ) ( 1)( ) ( 2)( 2)

              = 4 4                          (10)

kD v n k j n n k j

n n k j

γ ≥ − − + − − + −

− + + −
        

for 2.j k n≤ ≤ −  
Finally we assume that n – 1 ≤  k ≤  n. There is only one 
path from vk to vj and there is only one path from vk to vj-1. 
Considering the (k – 1 – j, 0)-path from vk to vj we have u0 = 
k – 1 – j. Considering the (k – 1 – j, 1)-path from vk to vj-1, 
we have v0 = n – k + j – 1. By Corollary 3.4 we have  

(2)

2

( ) ( 1)( 1 ) ( 2)( 1)

             4 4                               (11)

kD v n k j n n k j

n n k j

γ ≥ − − − + − − + −

= − + + −
 

for 1, .k n n= −  
Hence from (9), (10) and (11) we conclude that 

(2)
2( ) 4 4           (12)kD v n n k jγ ≥ − + + −  

for all 1, 2, , .k n= K  
We next show the upper bonds. First we show that 

(2)
2

1( ) 4 5D v n n jγ ≤ − + −  and then we use Proposition 3.2 to 
get the other bounds. For i = 1, 2, …, n let p1, i be a path from 
v1 to vi. We consider the system of equations 

2
1,

1,

( ) 5 8 .          (13)
( ) 3

i

i

r p n n jMz
b p n

⎡ ⎤⎡ ⎤ − + −
+ = ⎢ ⎥⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦
 

The solution to the system (13) is the integer vector  
1, 1,1

1, 1,2

1 ( ) ( )( 3)
.   (14)

2 ( ) ( )( 2)
i i

i i

n j r p b p nz
z

j r p b p nz
− − − + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

When b(p1,i) = 0, there is a path from v1 to vi with r(p1,i) ≤  n 
– 1 – j. This and equation (14) imply z1 ≥  0. When b(p1,i) = 
1, then all paths from v1 to vi have the property that r(p1,i) ≥  
n – j. This and equation (14) imply z2 ≥  0. Therefore, the 
system (13) has a nonnegative integer solution. By 
Proposition 3.1 there is an (n2 – 5n + 8 – j, n – 3)-walk from 
the vertex v1 to vertex vi for all i = 1, 2, …, n. Hence 

(2)
2

1( ) 4 5 .D v n n jγ ≤ − + −  We now conclude that 

(2)
2

1( ) 4 5D v n n jγ = − + − .  
For k = 2, …, n – 2, there is a (k – 2, 1)-path of length k – 1 
from vk to vi. Proposition 3.2 implies 
that (2)

2
1( ) 4 4D v n n k jγ ≤ − + + − . For k = n – 1, n, there is a 

(k – 3, 1)-path of length k – 2 from vk to v1. By Proposition 
3.2 (2)

2( ) 4 4kD v n n k jγ ≤ − + + − for all k= 2,…, n. 
Hence we conclude that 

(2)
2( ) 4 4           (15)kD v n n k jγ ≤ − + + −  

for all 1, 2, , .k n= K  
 From (12) and (15) we finally conclude that 

(2)
2( ) 4 4kD v n n k jγ = − + + − for all 1, 2, , .k n= K  

 
We now discuss the case where D(2) has two blue arcs. We 
note that one of the blue arcs must lie on the path 
v1→ vn→ vn-1→ vn-3 and the other must lie on the path 
v1→ vn-2→ vn-3. We split the proof into six cases depending 
on the position of the two blue arcs. 
 
Theorem 4.2 Let D be the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 – 4n + 6 and let D(2) 
be a primitive 2-digraph whose underlying digraph is D. If 
the blue arcs of D(2) are the arcs v1→ vn-2 and v1→ vn, then  

(2)

2

2

4 3 ,     1 2
( )

4 2 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

Proof: We first show the lower bound. Let vk, 1 ≤  k ≤  n be 
any vertex in D(2). We use the path from vk  to vn-2 and the 
path from vk to v1 in order to get the value of u0 and v0 in 
Corollary 3.4. Notice that for any k = 1, 2, …, n, there is a 
unique path from vk to vn-2 and there is a unique path from vk 
to v1. We split the proof into two cases when 1 ≤  k ≤  n – 2 
and when k = n – 1, n. 
We first discuss case where 1 ≤  k ≤  n – 2. Considering the 
(k – 1, 1)-path pk,n-2 from vk to vn-2 we have v0 = n – k – 1. 
Considering the (k – 1, 0)-path pk,1 from vk to v1 we have u0 = 
k – 1. Corollary 3.4 implies that 

22 3 1 5 5 . (16)
1 1 1 2

s n n k n n k
t n k n

⎡ ⎤− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − + +≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

From (16) we have 
 (2)

2( ) 4 3                     (17)kD v n n kγ ≥ − + +  

for 1 2.k n≤ ≤ −  
We now assume that k = n – 1, n. Using the (k – 2, 1)-path 
pk,n-2 from vk to vn-2 we find that v0= n – k.  Using the (k – 2, 
0)-path pk,1 from vk to v1 we have u0 =k–2.By Corollary 3.4 
we have 

(2)

2

( ) ( 1)( 2) ( 2)( )

            4 2                         (18)

kD v n k n n k

n n k

γ ≥ − − + − −

= − + +
 

For 1, .k n n= −  
Hence from (17) and (18) we now have 

(2)

2

2

4 3 ,     1 2
( )   (19)

4 2 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≥ ⎨
− + + − ≤ ≤⎪⎩

 

We show the upper bounds. We first show that 
(2)

2
1( ) 4 4D v n nγ = − + and then we use Proposition 3.2 to get 

the other bounds. For i = 1, 2, …, n, let p1,i be a path from v1 
to vi. The system of equations  

2
1,

1,

( ) 5 6               (20)
( ) 2

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦
 

has integer solution 
1, 1,1

1, 1,2

( )( 3) ( )
.    (21)

2 ( ) ( )( 2)
i i

i i

b p n r pz
z

n r p b p nz
− −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

We note that for each i = 1, 2, …, n there is a path p1,i with 
b(p1,i) = 1 and r(p1,i) ≤  n – 3. This and equation (21) imply 
z1 ≥  0 and z2 ≥  0. Hence system (20) has a nonnegative 
integer solution. Proposition 3.1 implies 
that (2)

2
1( ) 4 4D v n nγ ≤ − + . We can now conclude 

that (2)
2

1( ) 4 4D v n nγ = − + . 
Since for each k = 2, 3, …, n – 2, there is a (k – 1, 0)-walk of 
length k – 1 from vk to v1, then by Proposition 3.2 we have 

(2)
2( ) 4 3kD v n n kγ ≤ − + + . For each k = n – 1, n, there is a 

(k – 2, 0)-path of length k – 2 from vk to v1. Proposition 3.2 
implies (2)

2( ) 4 2kD v n n kγ ≤ − + + . Therefore, we have 

(2)

2

2

4 3 ,     1 2
( )   (22)

4 2 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≤ ⎨
− + + − ≤ ≤⎪⎩

 

From (19) and (22) we now conclude that  
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(2)

2

2

4 3 ,     1 2
( )

4 2 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

 
Theorem 4.3 Let D be the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 – 4n + 6 and let D(2) 
be a primitive 2-digraph whose underlying digraph is D. If 
the blue arcs of D(2) are the arcs v1→ vn-2 and vn→ vn-1, 
then  

(2)

2

2

3 2 ,     1 2
( )

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

Proof. We show the lower bounds. For k = 1, 2, …, n, we 
use the path from vk to vn-2 and the path from vk to vn to set up 
the value of u0 and v0 in Corollary 3.4. We note that for any 
k = 1, 2, …, n there is a unique path from vk to vn and a 
unique path from  vk to vn-2. 
We first set up the case where 1≤  k ≤  n – 2. Considering 
the (k – 1, 1)-path pk,n-2 from vk to vn-2 we conclude that v0 = n 
– k – 1. Considering the (k, 0)-path pk,n from vk to vn we 
conclude that u0 = k. By Corollary 3.4 we have  

22 3 4 3 .       (23)
1 1 1 1

s n n k n n k
t n k n

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − + +
≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

From (23) we have  
(2)

2( ) 3 2                            (24)kD v n n kγ ≥ − + +  

for 1 2.k n≤ ≤ −  
We now assume that k = n – 1. Using the (k – 2, 1)-path 
from vk to vn-2 we have v0 = n – k. Using the (k – 1, 0)-path 
from vk to vn we find u0 = k – 1. Corollary 3.4 implies that 

( 2)

2

( ) ( 1)( 1) ( 2)( )

               3 1                            (25)
kD v n k n n k

n n k

γ ≥ − − + − −

= − + +
 

for k = n – 1. 
Finally let k = n. Using the (n – 3, 2)-path from vk to vn-2 we 
find that v0 = n – 1. By considering the (n – 2,1)-path pk,n 
from vk to vn we have 0 1.u =  Corollary 3.4 implies that  

(2)

2 2

( ) ( 1)(1) ( 2)( 1)

              2 1 3 1       (26)
kD v n n n

n n n n k

γ ≥ − + − −

= − + = − + +
 

for k = n. 
Hence from (24), (25) and (26) we now conclude that 

(2)

2

2

3 2 ,     1 2
( )   (27)

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≥ ⎨
− + + − ≤ ≤⎪⎩

 

We now discuss the upper bounds. We first show that 
( 2)

2
1( ) 3 3D v n nγ ≤ − +  and we use Proposition 3.2 to get the 

other bounds. For i = 1, 2, …, n let p1,i be a path from v1 to 
vi. The system of equations  

2
1,

1,

( ) 4 4           (28)
( ) 1

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦
 

has integer solution  
1, 1,1

1, 1,2

1 ( ) ( )( 3)
.     (29)

2 ( ) ( )( 2)
i i

i i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

For each i = 1, 2, …, n there is a path p1,i from v1 to vi with 
b(p1,i ) ≤  1 and r(p1,i ) ≤  n – 3. Since b(p1,i ) ≤  1, from (29) 
we have z2 ≥  0. If for some i = 1, 2, …, n we have b(p1,i ) = 
1, then r(p1,i ) = 1. This and (29) imply z1 ≥  0. Therefore, the 
system (28) has a nonnegative integer solution. By 

Proposition 3.1, we have that (2)
2

1( ) 3 3D v n nγ ≤ − + . Hence, we 

can conclude that (2)
2

1( ) 3 3D v n nγ = − + . 

We note that for each k = 2, 3, …, n – 2 there is a (k – 1, 0)-
path of length k – 1 from vk to v1. By Proposition 3.2 

(2)
2( ) 3 2kD v n n kγ ≤ − + + . For k = n – 1 the shortest path from 

vk to v1 is a (k – 2, 0)-path of length 2k − . Proposition 3.2 
implies that (2)

2( ) 3 1kD v n n kγ ≤ − + + . Finally for k = n, the 

shortest path from vk to v1 is a (k – 3, 1)-path of length 2.k −  
Proposition 3.2 implies that (2)

2( ) 3 1kD v n n kγ ≤ − + + . 

Therefore, we now have 

(2)

2

2

3 2 ,     1 2
( )    (30)

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≤ ⎨
− + + − ≤ ≤⎪⎩

 

 Now from (27) and (30) we conclude that 

(2)

2

2

3 2 ,     1 2
( )

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

 
Theorem 4.4 Let D be the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 – 4n + 6 and let D(2) 
be a primitive 2-digraph whose underlying digraph is D. If 
the blue arcs of D(2) are the arcs v1 → vn-2 and vn-1 → vn-3, 
then  

(2)

2

2

2 1 ,     1 2
( )

2      ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + − ≤ ≤⎪⎩

 

Proof: We consider the lower bound. For k = 1, 2, …, n we 
use a path from vk to vn-2 and a path from vk to vn-1 to set up 
the value of u0 and v0 in Corollary 3.4. We note that there is 
a unique path from vk to vn-2 and there is also a unique path 
from vk to vn-1. 
First we assume that 1 ≤  k ≤ n – 2. Using the (k – 1, 1)-path 
from vk to vn-2, we have that v0 = n – k – 1. Using the (k + 
1,0)-path from vk to vn-1 we find that u0 = k + 1. Therefore By 
Corollary 3.4 we have  

21 3 1 .         (31)
1

s k n n kM
t n k n

⎡ ⎤+⎡ ⎤ ⎡ ⎤ − + +
≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

From (31) we have 
 (2)

2( ) 2 1                             (32)kD v n n kγ ≥ − + + . 

for 1 2.k n≤ ≤ −   
Now we assume that k = n – 1. Considering the (k – 3, 2)-
path from vk to vn-2, we have v0 = k + 1. Considering the (k 

– 1, 1)-path from vk to vn-1, we find that u0 = 1. Thus 
Corollary 3.4 implies that 

(2)
2( ) ( 1) ( 2) 2           (33)kD v n n n n n kγ ≥ − + − = − +  

for k = n – 1. 
Finally, we assume that k = n. Considering the (1,0)-path 
from vk to vn-1, we have that u0 = 1. Considering the (n – 3, 
2)-path from vk to un-2, we have v0 = n – 1. By Corollary 3.4,  

22 3 1 3 1 .        (34)
1 1 1

s n n n n
t n n

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − +
≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

From (34) we have (2)
2( ) 2 1kD v n nγ ≥ − + . For i = 1, 2, …, n, 

let pn,i be a path from vn to vi. The solution to the system of 
equations 
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2
1,

1,

( ) 3 1                 (35)
( )

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

is 
, ,1

, ,2

1 ( ) ( )( 3)
.       (36)

1 ( ) ( )( 2)
n i n i

n i n i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

We note that the path from vn to vn-1 is a (1,0)-path. This 
implies for path pn,n-1 from vn to vn-1 the solution to the 
system (35) in (36) is z1 = 0 and z2 = n. But this implies there 
is no (n2 – 3n + 1, n)-walk from the vertex vn to vertex 

1.nv − Hence we now conclude that (2)
2( ) 2 1nD v n nγ > − + . We 

note that the shortest walk from vn to vn-1 containing an (n2 – 
3n + 1, n)-walk is an (n2 – 2n – 1, n + 1)-walk. Therefore, we 
conclude that  

(2)
2 2( ) 2                           (37)kD v n n n n kγ ≥ − = − +  

for k = n. 
Hence from (32), (33) and (37) we now conclude that 

(2)

2

2

2 1 ,     1 2
( )    (38)

2      ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≥ ⎨
− + − ≤ ≤⎪⎩

 

We now discuss the upper bounds. We first show that 
(2)

2
1( ) 2 2D v n nγ ≤ − +  and then we use Proposition 3.2 to show 

the other bounds. For i = 1, 2, …, n. Let p1,i be a path from v1 
to vi . The integer solution to the system 

2
1,

1,

( ) 3 2                (39)
( )

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

is 
1, 1,1

1, 1,2

2 ( ) ( )( 3)
.          (40)

2 ( ) ( )( 2)
i i

i i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

Every path p1,i from v1 to vi has the property that r(p1,i)≤ n – 
3 and b(p1,i) ≤ 1. This and equation (40) imply z2 ≥ 0. 
Moreover, if b(p1,i) = 0, then r(p1,i) = 2. This and equation 
(40) imply z1 ≥ 0. We conclude that the system (39) has a 
nonnegative integer solution. Proposition 3.1 implies that 

(2)
2

1( ) 2 2D v n nγ ≤ − + . Hence we conclude that 

(2)
2

1( ) 2 2D v n nγ = − + . 

For 1≤ k ≤  n – 2, there is a (k – 1,0)-path from vertex vk to 
vertex v1. Proposition 3.2 guarantees that 

( 2)
2( ) 2 1kD v n n kγ ≤ − + + . For k = n – 1, n, there is a (k – 

3,1)-path from vk to v1. Proposition 3.2 implies that 
( 2)

2( ) 2kD v n n kγ ≤ − + . Hence we now have 

(2)

2

2

2 1 ,     1 2
( )   (41)

2      ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≤ ⎨
− + − ≤ ≤⎪⎩

 

Now from (38) and (41) we conclude that 

(2)

2

2

2 1 ,     1 2
( )

2      ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + − ≤ ≤⎪⎩

 

 
Theorem 4.5 Let D be the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 – 4n + 6  and let D(2) 
be a primitive 2-digraph whose underlying digraph is D. If 
the blue arcs of D(2) are the arcs vn-2→ vn-3 and v1→ vn, then  

(2)

2

2

3 2 ,     1 2
( )

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

Proof: We show the lower bounds. For k = 1, 2, …, n we use 
the unique path from vk to vn-2 and the unique path from vk to 
vn to get the value of u0 and v0 in Corollary 3.4. We split the 
proof into three cases. 
We first consider the case where 1≤ k ≤ n – 3. Considering 
the (k,0)-path from vk to vn-2, we have u0 = k. Considering the 
(k – 1,1)-path from vk to vn, we have v0 = n – k – 1. By 
Corollary 3.4 we conclude that  

22 3 4 3 .      (42)
1 1 1 1

s n n k n n k
t n k n

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − + +≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

From (42) we have 
 (2)

2( ) 3 2                                 (43)kD v n n kγ ≥ − + +  
for 1 ≤ k ≤ n – 3. 
We consider the case where k = n – 2. Using the (n – 3,1)-
path from vertex vn-2 to itself, we have u0 = 0. Using the (n – 
4,2)-path from vertex vn-2 to vertex vn, we have v0 = n. 
Corollary 3.4 implies that  

(2)
2 2( ) ( 2) 2 3 2        (44)kD v n n n n n n kγ ≥ − = − = − + + for k 

= n – 2. 
Finally we consider the case where k = n – 1, n. Considering 
the (k – 1,0)-path from vk to vn-2, we have that u0 = k – 1. 
Considering the (k – 2,1)-path from vk to vn, we find that v0 = 
n – k. Corollary 3.4 implies that 

(2)

2

( ) ( 2)( 1) ( 3)( )

               3 1                                (45)
kD v n k n n k

n n k

γ ≥ − − + − −

= − + +
 

for k = n – 1, n. 
Now from (43), (44) and (45) we have that 

(2)

2

2

3 2 ,     1 2
( )    (46)

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≥ ⎨
− + + − ≤ ≤⎪⎩

 

We now discuss the upper bound. We first show that 
(2)

2
1( ) 3 3D v n nγ = − + and use Proposition 3.2 to get the other 

bounds. For i = 1, 2, …, n. let p1,i be a path from v1 to vi. The 
solution of the system 

2
1,

1,

( ) 4 4             (47)
( ) 1

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦
 

is the integer vector 
1, 1,1

1, 1,2

1 ( ) ( )( 3)
.      (48)

2 ( ) ( )( 2)
i i

i i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

For each i = 1, 2, …, n, there is a path p1,i with the property 
that b(p1,i) ≤ 1 and r(p1,i) ≤  n – 3. Moreover, when b(p1,i) = 
0, then r(p1,i) = 1. This and equation (48) imply z1 ≥  0. We 
also note that when b(p1,i) = 1, then r(p1,i) ≤  n – 3. This and 
equation (48) imply z2 ≥ 0. Therefore, the system (47) has a 
nonnegative integer solution. By Proposition 3.1 

(2)
2

1( ) 3 3D v n nγ ≤ − +  and hence we conclude 

that (2)
2

1( ) 3 3D v n nγ = − + . 

For each k= 2, 3, .., n – 3, there is a (k – 1,0)-path of length k 
– 1 from vk  to v1. Proposition 3.2 implies that 

(2)
2( ) 3 2kD v n n kγ ≤ − + + . For k = n – 2, there is a (k – 2,1)-

path of length k – 1 from vk to v1. By Proposition 3.2 
( 2)

2( ) 3 2kD v n n kγ ≤ − + + . Finally, when k = n – 1, n there is 

a (k – 2,0)-path of length 2k − from vertex vk to vertex v1. 
By Proposition 3.2 (2)

2( ) 3 1kD v n n kγ ≤ − + + ; therefore, we 

now have 
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(2)

2

2

3 2 ,     1 2
( )    (49)

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≤ ⎨
− + + − ≤ ≤⎪⎩

 

From (46) and (49) we now conclude that 

(2)

2

2

3 2 ,     1 2
( )

3 1 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

 
Theorem 4.6 Let D be the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 – 4n + 6 and let D(2) be 
a primitive 2-digraph whose underlying digraph is D. If the 
blue arcs of D(2) are the arcs vn-2→ vn-3 and vn → vn-1, then 

(2)

2

2

4 4 ,     1 2
( )

4 3 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

Proof: We show the lower bounds. For k = 1, 2, …, n. We 
use the unique path from vk to vn-2 and the unique path from 
vk to vn-1 to set the value of u0 and v0 in Corollary 3.4. We 
split the proof into four cases. 
We first let 1 ≤ k ≤ n – 3. Considering the (k,0)-path from vk 
to vn-2, we have u0 = k. Considering the (k,1)-path from vk to 
vn-1, we find v0 = n – k – 2. Corollary 3.4 implies that 

22 3 5 6 .      (50)
1 1 2 2

s n n k n n k
t n k n

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − + +
≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

From (50) we have  
(2)

2( ) 4 4                             (51)kD v n n kγ ≥ − + +  

for 1 3.k n≤ ≤ −  
We consider the case where k = n – 2. Using the (k – 1,1)-
path from vk to vn-2, we have that 0 2.u k n= − + Using the (k 
– 1,2)-path from vk to vn-1, we find 0 2 3.v n k= − − By 
Corollary 3.4 we conclude that 

( 2)

2

( ) ( 1)( 2) ( 1)(2 1)

             4 4                               (52)
kD v n k n n n k

n n k

γ = − − + + − − −

= − + +
for k = 

n – 2. 
We now let k = n – 1. Considering the (k – 1,0)-path from vk 
to vn, we have u0 = k – 1. Considering the (k – 1,1)-path from 
vk to vn-1, we have v0 = n – k – 1. By Corollary 3.4  

(2)

2

( ) ( 1)( 1) ( 2)( 1)

             4 3                                  (53)
kD v n k n n k

n n k

γ ≥ − − + − − −

= − + +
 

for k = n – 1. 
Finally let k = n. Considering the (0,1)-path from vk to vn-1, 
we have v0 = n – 2. Considering the (k – 2,1)-path from vk to 
vn-2, we find that u0 = 1. By Corollary 3.4  

(2)

2 2

( ) ( 1)(1) ( 2)( 2)

             3 3 4 3            (54)

kD v n n n

n n n n k

γ ≥ − + − −

= − + = − + +
 

From (51), (52), (53) and (54) we now can conclude that 

(2)

2

2

4 4 ,     1 2
( ) (55)

4 3 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≥ ⎨
− + + − ≤ ≤⎪⎩

  
We now set up the upper bound. We first show that 

(2)
2

1( ) 4 5D v n nγ ≤ − + and then use Proposition 3.2 to set up 

the other bounds. For i = 1, 2, …, n let p1,i be a path from v1 
to vi. The system of equation  

2
1,

1,

( ) 5 7         (56)
( ) 2

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦
 

has integer solution 

1, 1,1

1, 1,2

1 ( ) ( )( 3)
.    (57)

3 ( ) ( )( 2)
i i

i i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

We note that if b(p1,i) = 0, then r(p1,i) = 1. This and equation 
(57) imply z1 ≥  0. Moreover if b(p1,i) = 1, then r(p1,i) ≥  1. 
This and equation (57) imply z2 ≥ 0. Therefore the system 
(56) has a nonnegative integer solution. Hence Proposition 
3.1 guarantees that (2)

2
1( ) 4 5D v n nγ ≤ − + . Therefore, we now 

conclude that (2)
2

1( ) 4 5D v n nγ = − + . 

Note that for k = 2, …, n – 3, there is a (k – 1, 0)-path of 
length k – 1 from vk to v1. Proposition 3.2 implies that 

(2)
2

2( ) 4 4D v n n kγ ≤ − + + . For k = n – 2, there is a (k – 2,1)-

path from vk to v1 of length k – 1. By Proposition 3.2 
(2)

2( ) 4 4kD v n n kγ ≤ − + + . For k = n – 1, there is a (k – 2,0)-

path of length k – 2 from the vertex vk to the vertex v1. By 
Proposition 3.2 (2)

2( ) 4 3kD v n n kγ ≤ − + + . Finally for k = n, 

there is a (k – 3,1)-path of length k – 2 from vk to v1. By 
Proposition 3.2 we now have that ( 2)

2( ) 4 3kD v n n kγ ≤ − + + . 

Therefore, we know have 

(2)

2

2

4 4 ,     1 2
( ) (58)

4 3 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≤ ⎨
− + + − ≤ ≤⎪⎩

       

From (55) and (58) we conclude that 

(2)

2

2

4 4 ,     1 2
( )

4 3 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

 
Theorem 4.7 Let D be the primitive ministrong digraph on n 
vertices v1, v2, …, vn with exponent n2 -  4n + 6 and let D(2) 
be a primitive 2-digraph whose underlying digraph is D. If 
the blue arcs of D(2) are the arcs vn-2→ vn-3 and vn-1→ vn-3, 
then 

(2)

2

2

4 5 ,     1 2
( )

4 4 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

Proof: We set up the lower bounds. We use a path from vk to 
vn-1 and a path from vk to vn-3 to get the value of u0 and v0 in 
Corollary 3.4. We split the proof into four cases. 
First we consider the case where 1 ≤ k ≤ n – 3. Notice that 
there are two paths from vk to vn-3 one is a (k,1)-path and the 
other is a (k + 1,1)-path. Using the (k + 1,0)-path from vk to 
vn-1, we have u0 = k + 1. Using the (k,1)-path from vk to vn-3, 
we have v0 = n – k – 2. Using the (k + 1,1)-path from vk to vn-

3 we find that v0 = n – k – 3. So we conclude that v0 = n – k – 
3 and by Corollary 3.4 we have 

21 5 7 .              (59)
3 2

s k n n kM
t n k n

⎡ ⎤+⎡ ⎤ ⎡ ⎤ − + +≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

From (59) we have  
(2)

2( ) 4 5                                    (60)kD v n n kγ ≥ − + +  

for 1 ≤ k ≤ n – 3. 
We now assume that k = n – 2. Considering the (k,1)-path 
from vk to vn-1, we have u0 = 1. Considering the (0,1)-path 
from vk to vn-3, we have v0 = n – 2. Hence Corollary 3.4 
implies that 

(2)

2 2

( ) ( 1)(1) ( 2)( 2)

           3 3 4 5              (61)
kD v n n n

n n n n k

γ ≥ − + − −

= − + = − + +
 

for k = n – 2. 
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We consider the case where k = n – 1. Using the (k – 1,1)-
path from vk to vn-1, we have u0 = 1. Using the (0,1)-path 
from vk to vn-3, we have v0 = n – 2, By Corollary 3.4 we 
conclude 

( 2)

2 2

( ) ( 1) ( 2)( 2)

             3 3 4 4                (62)
kD v n n n

n n n n k

γ ≥ − + − −

= − + = − + +
 

for k = n – 1. 
Finally let k = n. Considering the (1,0)-path from vk to vn-1, 
we have u0 =1. Considering the (1,1)-path from vk to vn-3, we 
have v0 = n – 3. Corollary 3.4 implies that 

22 3 1 5 7 .         (63)
1 1 3 2

s n n n n
t n n

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − +
≥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

From (63) (2)
2 2( ) 4 5 5 5kD v n n n n kγ ≥ − + = − + + . Notice that the 

system of equations 
2

,

,

( ) 5 7          (64)
( ) 2

k i

k i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − +
+ = ⎢ ⎥⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦
 

has integer solution 
, ,1

, ,2

1 ( ) ( )( 3)
.     (65)

3 ( ) ( )( 2)
k i k i

k i k i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

We note that the path from vn to vn-1 is a (1,0)-path. This 
implies for path pn,n-1, the solution to the system (64) in 
equation (65) is z1 = 0 and z2 = n – 2. But this implies there is 
no (n2 – 5n + 7, n – 2)-walk from the vertex vn to vertex vn-1, 
hence (2)

2( ) 4 5kD v n nγ > − + . Notice that the shortest walk 

from vn to vn-1 with at least n2 – 5n + 7 red arcs and at least n 
– 2 blue arcs is an (n2 – 4n + 5, n – 1)-walk. Hence we 
conclude that  

(2)
2 2( ) 3 4 4 4          (66)kD v n n n n kγ ≥ − + = − + +  

for k = n.  
Hence from (60), (61), (62) and (66) we now have the lower 
bound 

(2)

2

2

4 5 ,     1 2
( )    (67)

4 4 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≥ ⎨
− + + − ≤ ≤⎪⎩

  
We next consider the upper bound. We first show that 

(2)
2

1( ) 4 6D v n nγ = − +  and then we use Proposition 3.2 to get 
the other bounds. For  i = 1, 2, …, n let p1,i  be a path from v1 
to vi . The system 

2
1,

1,

( ) 5 8          (68)
( ) 2

i

i

r p n nMz
b p n

⎡ ⎤⎡ ⎤ − ++ = ⎢ ⎥⎢ ⎥
−⎢ ⎥⎣ ⎦ ⎣ ⎦

 

has integer solution 
1, 1,1

1, 1,2

2 ( ) ( )( 3)
.   (69)

4 ( ) ( )( 2)
i i

i i

r p b p nz
z

n r p b p nz
− + −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦
 

Notice that when b(p1,i) = 0, then r(p1,i) = 2. This and 
equation (69) imply z1 ≥  0. When b(p1,i) = 1, then there is a 
path p1,i  such that r(p1,i) ≥  2. This and equation (69) imply -
z2 ≥ 0. Thus the system (68) has a nonnegative integer 
solution. By Proposition 3.1 (2)

2
1( ) 4 6D v n nγ ≤ − + . We now 

conclude that (2)
2

1( ) 4 6.D v n nγ = − +  

For k = 2, 3, …, n – 3, there is a (k – 1,0)-path of length k – 1 
from vk to v1. Proposition 3.2 implies that 

(2)
2( ) 4 5kD v n n kγ ≤ − + + . When k = n – 2, there is a (k – 2,1)-

path of length k – 1 from the vertex vk to v1. Proposition 3.2 

implies (2)
2( ) 4 5kD v n n kγ ≤ − + + . When k = n – 1, n, there is 

a (k – 3,1)-path of length k – 2 from vk to v1. Proposition 3.2 
guarantees that (2)

2( ) 4 4kD v n n kγ ≤ − + + ; Therefore, we now 
have the upper bound 

(2)

2

2

4 5 ,     1 2
( )    (70)

4 4 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪≤ ⎨
− + + − ≤ ≤⎪⎩

        

From (67) and (70) we conclude that 

(2)

2

2

4 5 ,     1 2
( )

4 4 ,     1 .
kD

n n k if k n
v

n n k if n k n
γ

⎧ − + + ≤ ≤ −⎪= ⎨
− + + − ≤ ≤⎪⎩

 

 
5. Conclusion and Future Research Directions 
In this paper we study the vertex exponents of two-colored 
extremal ministrong digraphs. By comparing the 
composition of closed and open walks in the two-colored 
digraph, we get a way in setting up lower and upper bounds 
for vertex exponents especially for two-colored digraphs 
consisting of two cycles. Using these bounds Theorem 4.1 
shows that if D(2) has only one blue arc, then each of its 
vertices has exponent that lies on the interval [n2- 5n + 8, n2 
– 3n + 1]. The sequence of Theorem 4.2 to Theorem 4.7 
show that if D(2) has two blue arcs, then each of its vertices 
has exponent lies on the interval [n2 – 4n + 4, n2 – n]. 
We note that Gao and Shao [4] have discussed vertex 
exponents for a class of two-colored digraph whose 
underlying digraph is the Wielandt digraph. In this paper we 
discuss vertex exponents for a class of two-colored 
ministrong digraph on n vertices whose underlying digraph 
is extremal ministrong digraph with exponent n2 – 4n + 6. 
There are a lot of open problems on vertex exponents of 
two-colored digraphs. For example the vertex exponents for 
classes extremal two-colored ministrong digraphs D(2) on n 
vertices, with exponent exp(D(2)) = (n3 – 2n2 + 1 )/ 2 when n 
is odd and exponent (n3 – 5n2 + 7n – 2) / 2 when n is even 
(see Theorem 5 of [6]), have not yet been determined. Shao 
and Gao [6,16] and Huang and Liu [8] discuss extensively 
the exponents of classes of two-colored digraphs consisting 
of two cycles. Similar investigation can be done for the 
vertex exponents. Finally the vertex exponents of class of 
two-colored symmetric digraph has not been determined 
while the exponents of class of two-colored symmetric 
digraphs has been determined in [17,18]. 
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