
Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Research Article Open Access

Abualhaija and Zimmermann, Global J Technol Optim 2016, 7:1
http://dx.doi.org/10.4172/2229-8711.1000193

Research Article Open Access

Global Journal of Technology
& OptimizationGl

ob
al

 J
ou

rn
al

 of Technology and O
ptim

ization

ISSN: 2229-8711

Solving Specific Domain Word Sense Disambiguation using the D-Bees
Algorithm
Sallam Abualhaija* and Karl-Heinz Zimmermann

Institute of Embedded Systems, Hamburg University of Technology, Schwarzenberg (Campus E), D-21071 Hamburg, Germany

*Corresponding author: Sallam Abualhaija, Institute of Embedded Systems,
Hamburg University of Technology, Schwarzenberg (Campus E), D-21071
Hamburg, Germany, Tel: +49 (0) 40 42878-3255; Fax: +49 (0) 40 42878-2798
E-mail: sallam.abualhaija@tu-harburg.de

Received April 25, 2016; Accepted May 02, 2016; Published May 06, 2016

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word
Sense Disambiguation using the D-Bees Algorithm. Global J Technol Optim 7: 193.
doi:10.4172/2229-8711.1000193

Copyright: © 2016 Abualhaija S, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Word sense disambiguation is the problem of finding the most likely senses for a sequence of words in a given

context. Disambiguation is a major step in most of the text applications. However, the meanings of the words
are highly dependent on the domain of the text. Recently, word sense disambiguation is being addressed as an
optimization problem. For this, metaheuristics like simulated annealing and D-Bees are developed. In this paper, we
try to answer the question about the compatibility of general domain algorithms to solve specific domain word sense
disambiguation. For this, we propose two variants of the D-Bees algorithm to include the domain information into the
disambiguation process. The concepts proposed in this paper are general and can be adapted to other algorithms. It
will be concluded that the D-Bees algorithm is suitable for solving specific domain word sense disambiguation. It has
a robust performance in general and achieves competitive results compared with the simulated annealing method for
different datasets.

Keywords: Specific domain; Disambiguation; Algorithm; D-Bees

Introduction
Word Sense Disambiguation (WSD) is the problem of identifying

the most likely sense of a target word, or a sequence of words, in a given
context [1]. For example, the word mouse has two different meanings
in the following two sentences: “The mouse eats cheese” and “I want to
buy a new mouse for my computer”. The word mouse in the previous
two sentences refers to “a rodent” and “a computer device” respectively.

WSD is not a stand-alone problem [2,3] rather it is used implicitly
in many applications like machine translation [4] information retrieval
[5] lexical simplification [6] and others.

Disambiguating words in a particular domain is referred to as
specific domain WSD. Considering the domain of the text in WSD
is important in particular applications like machine translation in
order to achieve high accuracy. For example, the word bug should be
translated to the German word Wanze if it means “an insect” in some
biological context. If it has the computing sense “a fault or defect in a
computer program”, then it should be translated into German as Fehler
or Fehlfunktion.

There are several methods to solve the WSD problem for general
domain that are usually divided into three interrelated categories:
supervised, unsupervised, and knowledge-based methods [2,1].

Supervised methods use semantically annotated corpora. In these
methods, a classifier is trained using a subset of the annotated corpora
(training set), then evaluated using the another subset of the annotated
corpora (test set). The classifier should be able to classify new examples
correctly [1].

Unsupervised methods use unannotated corpora. They are mainly
based on the assumption that words which occur in similar contexts
are likely to have similar meanings. The result is a set of clusters of
related words, each of which conveying a particular sense [7].

Finally, knowledge-based methods rely on machine readable
dictionaries such as WordNet [8]. These approaches are applicable to
any text, as long as the words are covered by the used dictionaries.

The Lesk algorithm [9] is a well-known knowledge-based method

that disambiguates two words by calculating the contextual overlap
between these definitions of their senses. For example, each of the
words pine and cone has a sense that includes the terms evergreen
tree in their sense definitions, so these two senses will be assumed to
disambiguate each other in case pine and cone co-occur in the same
context.

This algorithm is intuitive and simple to implement. However,
it fails when there is no overlap found between the sense definitions.
Therefore, variants of the Lesk algorithm are proposed to augment the
definition of a word meaning with definitions of semantically related
words [10].

Further researches are being done on the knowledge-based methods
although the supervised methods achieve better results [11]. The reason
is that the process of annotating corpora needs strenuous effort and has
to be repeated for every language and for various domains.

Moreover, the same language evolves by time which means even
more effort to get new examples if new terms appear; e.g., the word
tweet nowadays means “the sound of a bird” or “an entry posted on
Twitter” [12]. Therefore, the coverage of supervised methods is limited
by the available set of annotated examples.

Recently, WSD is being addressed as an optimization problem
by applying the Lesk algorithm to a a text larger than two words [13].
The straight forward method is to consider all possible definition
combinations. This may lead to combinatorial explosion, that is the

http://dx.doi.org/10.4172/2229-8711.1000193

Page 2 of 7

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word Sense Disambiguation using the D-Bees Algorithm. Global J Technol
Optim 7: 193. doi:10.4172/2229-8711.1000193

Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

time complexity grows exponentially with the problem size and so the
problem becomes unsolvable within reasonable time [14].

In the previous example: “The cat chases the mouse in the yard”,
the sentence has three open-class words each of which having several
possible meanings as given by WordNet lexicon [8]: cat(8), chase(4),
mouse(4), yard(9) resulting in a total of 1,152 sense combinations
for this small sentence. This shows that applying the straight
forward method on a simple sentence might lead to the problem of
combinatorial explosion.

Metaheuristics like simulated annealing [15] and D-Bees [16] are
global algorithms that can be used to avoid the combinatorial explosion
problem.

Specific domain WSD introduces new challenges. The main
questions that arise here are to what extent can the general domain
WSD systems still be used within the specific domain application? Also
how should they be adapted to fit this problem if their performance is
not sufficient?

In this paper, we propose applying the D-Bees algorithm on WSD
problem for specific domain and try to answer the previous questions.
The experiments are conducted on two different datasets. The same
concepts are performed using the simulated annealing algorithm and
the results of both algorithms are compared and analyzed thoroughly.
The major contribution of this paper is proposing two general methods
to include the information from the domain into the WSD process.
This is applied on the D-Bees and simulated annealing here, but can be
applied to other algorithms as well.

The remainder of this paper is organized as follows. Section 2
gives an overview of the related background and describes the used
algorithms in brief. Section 3 explains adjusting the D-Bees algorithm
to solve the WSD problem for specific domain. For this, we introduce
the domain detection module and two different variants of the D-Bees
algorithm. Section 4 describes the results and experiments in details.
At the end of the section an analysis is provided about the performance
of the D-Bees algorithm in comparison with simulated annealing. The
conclusion is then given in section 5.

Background
The D-bees algorithm for general domain

Inspired by [13], the WSD optimization problem can be defined
as an optimization problem to disambiguate a sequence of words
simultaneously [16].

Definition 1 Let 1 2= (, , ,)nW w w w be a sequence of n words to
be disambiguated and a sequence of senses 1 2= (, , ,)ns s sσ  be the
corresponding sense si,

1 i n≤ ≤ for each word Wi. Let 1 m= { , , }σ σ
be the set of all sequences of senses that represent sense combinations
of the words in the sequence w. Then the objective function becomes

a (),rgmaxσ σ∈  					 (1)

where  is the score assigned to a sequence of senses based on the
semantic relatedness. The score is calculated using a variant of Lesk
(eLesk) as in [10].

The D-Bees algorithm aims at solving the WSD as an optimization
problem and it can be summarized as follows [16]. At first, one word is
chosen from the target words to represent the hive which produces bee
agents and sends them to other words in the context window.

The number of bee agents equals the number of senses of the hive.

In this way, each bee agent holds one sense in its memory and searches
for the senses that have a higher similarity value with the sense it holds.

Initially, the path contains a sense of the target word from which
the bee has created and the quality is set to zero. After each step, the bee
agents update their local memory. They append the chosen sense to the
path and update its quality by adding the similarity value incrementally.

The bee agent moves a step further until the number of moves is
reached and by this it accomplishes a forward pass. Then it initiates the
backward pass by returning to the hive holding a partial solution. In
the hive, the agents exchange information on a virtual dancing floor.

During the backward pass, the bee agents with good partial solution
advertise their solutions by performing a waggle dance. Each bee
calculates the loyalty probability, based on which the bee agent decides
whether to stay loyal to its path or to become uncommitted and follow
one of the advertised solutions. It follows that becoming a recruiter
depends mainly on the goodness of the partial solution found so far.

The forward and backward passes are alternated until there are
no more target words to be disambiguated. The bee agent with the
best found solution in terms of path quality is stored. Finally, the best
solution is returned as the output of the disambiguating process.

Simulated annealing for general domain

 Simulated Annealing (SA) is based on the metal annealing process.
The metal is heated and then cooled slowly to obtain a stable state [17].

SA has been applied to the WSD problem by Cowie et al. [15].
Given a sequence of n words 1= (, ,)nW w w the SA algorithm starts
with an initial sequence (σ) by assigning a sense to each word in the
sentence, randomly or based on some predefined criterion.

The algorithm searches for a sequence of senses that has the highest
number of overlapping words among the definitions. This overlap is
called redundancy (R). To do this, first all the definitions of the senses
are retrieved, preprocessed and stored in a list. For this list, a frequency
map is created, where each word has a matching frequency value
measuring how often the word occurs in the list. The redundancy is
then the summation of the frequency values minus one over all the list
such that the words that occur once do not influence the redundancy
value.

WSD in this case can be defined as a minimization problem, where
each sequence has an associated energy value (E) and the goal is to find
the sequence (σ) with the minimum energy value. The energy function
E represents the dissimilarity among words and can defined as follows:

1= ,
1

E
R+

					 (2)

where R is the redundancy.

A random modification is done on the initial solution, by changing
a sense of a randomly chosen word. The energy value is calculated for
and a decision whether to accept the new sequence or not is made. SA
accepts a “not-very-good” solution based on the rejection probability
in order to escape from the local optima hoping that a better solution
will be found in the later iterations.

This process is repeated until the maximum number of iterations
is reached, or the best solution found so far cannot be changed
significantly. Finally, the best found solution is returned.

http://dx.doi.org/10.4172/2229-8711.1000193

Page 3 of 7

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word Sense Disambiguation using the D-Bees Algorithm. Global J Technol
Optim 7: 193. doi:10.4172/2229-8711.1000193

Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Related work

The domain is included in the dictionaries under the name of
subject code [1]. Subject codes are used to define which senses belong to
which domains; e.g., the word bass expresses different meanings based
on the domain in which it is used, in music it means “the lowest part
of the musical range” and in biology it means “a type of fish”. Subject
codes can be used to detect the domain of a certain text by counting
their frequency overall words in the text. This is beneficial for the WSD
specific domain system by giving a preference to the senses that share
the same subject code.

The domain information are included in WordNet [8]. Synsets have
at least one domain label [1]. Domains can include synsets of different
syntactic categories, and they may group multiple different senses of a
certain word into a semantic cluster. This decreases the ambiguity level
in the case of specific domain disambiguation.

Magnini et al. [18] have presented a system to solve the specific
domain WSD problem under the hypothesis, called DDD (Domain
Driven Disambiguation). This hypothesis indicates that it is possible
to establish associations among words in a coherent text using their
domain labels, such that the related senses maximize the domain
similarity.

To this end, given a target word w1 and a context window
2= (, ,)nW w w

, the disambiguation process can be done in three steps
[1]:

Create the domain vector of the context window =2() = ()n
i iT W T w∪

(50± words around the target word were used in the DDD system).

Find the domain vector for each sense js of the target word
1 1 1() = (, ,),1 , 1j j jkT s t t j m k≤ ≤ ≥ , such that m1 is the number of senses

of the target word, and k is the number of domain words found for this
sense.

Choose the sense *s of the target word such that
* 1

=1 1= ((), ()).m
j js argmax T W T s 			 (3)

where  is the semantic similarity calculated between the sequence of
the domain words of the context window and the target word.

The domain vectors can be created using the associations between
the words synsets and the domain label provided in WordNet. Then,
the sense that maximizes the similarity with the relevant domain of
the context is selected. The DDD system was tested in Senseval 2 [19]
and achieved a precision of 75% and a recall of 36%. The reason of
achieving a low recall value is that only a subset of the word senses in a
document are actually related to the domain of the context.

T﻿he D-Bees Algorithm for Specific Domain
Adapting the D-Bees algorithm from the general domain to a

specific one starts by feeding the algorithm with domain information
about the dataset before the disambiguation process takes place.
Therefore, the first step is detecting the domain automatically. This is
possible by using the suitable semantic relations provided by WordNet
to indicate the domain.

Before starting the disambiguation process, the domain detection
procedure is performed on the whole dataset. Given a text to be
disambiguated 1 2= (, , ,)nW w w w , detecting the domain is done as
follows:

1. Retrieve the sequence of possible synsets 1 2= (, , ,)i i imi
S s s s

from Word Net for each word wi, where im ≥ is the number of senses,
1 i n≤ ≤ .

 2. For each synset ijs , get the semantic related synsets corresponding
to the semantic relation category.

3. Create a frequency table of two columns. In the first column,
store the domain words retrieved for all synsets of the target words
in the text. In the second column, store how many times this domain
word is associated with the synsets in the whole text.

4. Sort the frequency table in descending order, such that the first
entry represents the most frequent domain word in the whole text.

5. The idea is then to work with only the top-k domains, we used
the top-3 domains in our experiments.

We have included the domain words in the disambiguation module
of the D-Bees algorithm using two different approaches.

D-Bees variant 1: Domain information in choosing next
synset

The D-Bees algorithm for general domain is discussed earlier.
Given a sequence of words to be disambiguated 1 2= (, , ,)nW w w w , the
bee agents explore the senses of the words and append each time a sense
to the build up an admissible solution. Choosing the next sense can be
done either based on the usage frequency or uniformly at random.

In the specific domain D-Bees variant 1, we incorporate the
domain words by choosing the next sense during the disambiguation
process. This variant is motivated by the fact that the distributions
and predominant senses vary in a specific domain text [20]. Therefore
relying on on frequency of usage to choose the next senses might not be
result in “good-enough” solutions.

The alternative is to choose the next sense that has the highest
overlap with the top-k domain words. Let 1 2= (, , ,)nW w w w

 be the
sequence of words to be disambiguated. The domain words can be
defined as =1() = ()n

i iT W T w∪ . Let 1 2= (, , ,)kT t t t be the top-k frequent
domain words in the whole text (or dataset) sorted in descending
order. Choosing the next sense is then performed by selecting the sense
which has maximum number of overlapping domain words with the
text. Let ()iwσ be the selected next sense of the words wi. It can be
defined formally as follows:

=1() = {| overlap(, ()) |}mi
i j ijw argmax T T sσ 			 (4)

where ()ijT s is the domain words obtained from the thj sense of the
word wi, 1 i n≤ ≤ .

The D-Bees variant 1 works as follows:

Detect the domain for the whole dataset before starting the
disambiguation.

1. The disambiguation component works per sentence. Similar to
the generic D-Bees algorithm, after choosing the hive and initializing
the bee agents are supposed to choose a next sense to append it to the
partial solution they found so far.

The next word wi has the sequence of senses 1 2() = (, , ,)i i i imi
S w s s s .

Retrieve the semantic relations for each sense ijs from WordNet,
namely category. The result is sequence of domain words associated
with this sense ()ijT s .

Choose the next sense from the sequence of senses as in Eq. 4.

http://dx.doi.org/10.4172/2229-8711.1000193

Page 4 of 7

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word Sense Disambiguation using the D-Bees Algorithm. Global J Technol
Optim 7: 193. doi:10.4172/2229-8711.1000193

Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

If no overlapping domain words can be found between T and ()ijT s
, then choose the next sense uniformly at random or based on the usage
frequency as in the generic D-Bees.

The forward and backward passes as well as the loyalty and
recruitment process are performed similar to the generic D-Bees
algorithm.

The general flow chart that describes the D-Bees algorithm variant
1 for specific domain WSD is illustrated in Figure 1.

D-Bees variant 2: Domain information per sentence

The second approach is to append the top-k domain words to
each sentence before disambiguating it, and then remove them after
the disambiguation is completed as illustrated in Figure 2. In this case,
the domain words are participating in the disambiguation process. The
definitions of the domain words are influencing the objective function,
since we use the eLesk similarity measure.

This variant enriches the sense definitions with the domain
information. Therefore the result of the disambiguation process should
be more domain-relevant senses. In this way, the same generic D-Bees
algorithm can be used with some minor changes. Besides the domain
detection module, a component is created that appends the domain
words and the removes them to and from each sentence.

In more details the D-Bees algorithm variant 2 works as follows:

• Detect the domain words of the text before the disambiguation
process same as in variant 1. Let 1 2= (, , ,)kT t t t be the domain words
sorted in descending order based on the frequency of occurrence in
the text.

• Let 1 2= (, , ,)nW w w w

 be the sequence of words to be
disambiguated. Then append the domain words to the sequence of the
words:

= TW append
1 2 1 2(,) = (, , , , , , ,)n kW T w w w t t t 

.

• Perform the D-Bees disambiguation procedure on the WT the
same way as for the general domain. This means that the domain words
are considered like the target words and will be disambiguated.

The domain words might also be polysemous but they are definitely
more specific than the target words; e.g. the domain music and the
target word bass. The D-Bees algorithm benefits from the advantage of
considering the most frequent senses during the disambiguation; e.g.,
the case of music.

• Delete the domain words from the sentence: W=delete (W,T)
such that only the words in the original sequence will be returned as
the output of the disambiguation process.

The words that are not specific domain do not have a significant
influence on the domain detection. This fact makes this variant more
appealing because the D-Bees algorithm focuses on the specific domain
senses but still handles the target words well from a general domain
perspective.

Results and Analysis
The dataset

The specific domain word sense disambiguation is introduced
in [20] task 17: all-words WSD on a specific domain for different
languages: Chinese, Dutch, English and Italian [20]. The dataset
provided with the task includes a test set and background texts, both
of which focus on the environmental domain. Table 1 summarizes the
statistical information about the test sets.

The test set for the English language contains three texts focusing
on the environmental domain divided between 1,032 nouns and 366
verbs. The target words are annotated by only one expert.

The dataset includes three texts compiled by the European Center
for Nature Conservation and Worldwide Wildlife Forum [20]. Only
nouns and verbs are tagged as being target words and should be
disambiguated. The inter-annotator agreement is not applicable for the
English dataset because it was annotated by only one expert.

The first sense baseline has scored a precision of 50.5% on the
English test set, where the most frequent senses are taken from the
WordNet. The random baseline has scored a precision of 23.3%
which indicates a high average of polysemy in comparison with
other languages: 32.1%,32.8%,29.4% on Chinese, Dutch and Italian,
respectively [20].

In addition to this dataset, we have conducted experiments on the

Figure 1: D-Bees variant 1 for the specific domain WSD. Figure 1: D-Bees variant 1 for the specific domain WSD.

Figure 2: D-Bees variant 2 for specific domain WSD. Figure 2: D-Bees variant 2 for specific domain WSD.

Language Total Noun Verb IAA
Chinese 3989 754 450 0.96
Dutch 8157 997 635 0.90

English 5342 1032 366 n/a
Italian 8560 1340 513 0.72

Table 1: Dataset statistics.

http://dx.doi.org/10.4172/2229-8711.1000193

Page 5 of 7

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word Sense Disambiguation using the D-Bees Algorithm. Global J Technol
Optim 7: 193. doi:10.4172/2229-8711.1000193

Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

fourth text (d004) in SemEval 2007 task 7 [11]. The lemmas and part-
of-speech are provided for the target words. The text has 677 different
instances of nouns, verbs, adjectives and adverbs. The domain of
the text is computer science. Based on our experiments on d004, the
precision of the random sense baseline is 60.71%, while for the first
sense 75.18%.

To evaluate any WSD system, the following metrics are used. First,
coverage describes how many target words are disambiguated by the
system out of the total target words. Precision is the number of target
words that are correctly disambiguated divided by the total number of
target words that the system disambiguates and recall is the number
of correctly disambiguated target words divided by the total number
of target words in the dataset. Finally, the F-measure is the harmonic
mean of the precision and recall values.

Domain detection

In the [20] corpus the target words are tagged, but neither their
part of speech nor lemmas are provided. Therefore the performance of
the WSD system is partially influenced by the POS tagger as well as the
lemmatizer. The coverage is 100% for all algorithms; i.e., precision =
recall = F-measure. Thus we will report the precision only.

We have used two approaches in order to detect the domain of a
given text. The first approach (all texts) considers the domain words
over all the texts in [20] task 17 corpus.

We have developed the second approach (per text) because the
corpus consists of three different texts. The second approach considers
the domain words for each text in the corpus and apply it sentence wise
within the same text. This improves the results because then we limit
the range of domain detection into one coherent text. The detected
domain words are then more precise in the second approach. The
results are obtained by applying the D-Bees variant 1 discussed earlier.
Table 2 summarizes the results.

In Figure 3, we compare the performance of the domain detection
approaches on [20] task 17 corpus divided per text. It can be observed
that for all texts detecting the domain within one text outperforms

incorporating the domain information from the whole corpus.

The top two domain words in each text found by the domain
detection module for both corpora are listed in Table 3.

It can be observed that the dominant domain words in the text
d004 are precise and more specific. Therefore, choosing the senses
which have the maximum overlap with the domain words should lead
to a good performance. This argument has been proved by the results
of the D-Bees algorithm. The domain words have a remarkably high
frequency value (91 each) in comparison with the texts of [20] texts.
This means that they are shared among many words senses in the text.

On the other hand, in [20] the top domain words have less
frequencies. This means when selecting the next sense of a particular
word, it is less likely to find one with an overlap with the domain
words. However including the domain words in the disambiguation
process for each sentence enforces a bias towards the domain relevant
senses in the text. It can also be that the domain of environment is
broader than the computer science. Therefore, the domain words in
the environmental field have a larger polysemy average and need to be
disambiguated in comparison with that in the computer science field.

It can be assumed that the domain words can be highly affected
by the named entities in the text as shown in Table 3. There might be
some instance of rivers in the second text en2 that lead to the domain
word river; e.g., Jordan River. It might be useful to include some key
words manually to the whole text based on the domain. However, to
avoid the necessity of manual intervention, the algorithm can consider
more domain words than the top-3 as in our experiments. This ensures
that the existence of many named entities will not mislead the search
process.

Comparison with simulated annealing

We have developed the same disambiguation approaches using
the Simulated Annealing (SA) algorithm for the specific domain WSD
(more about this can be found in [21]).

SA is a metaheuristic that was adapted to solve the WSD
optimization problem. In SA, the disambiguation process starts with
an initial sequence of senses corresponds to the sequence of words to
be disambiguated. SA variant 1 includes the domain information from
each text in the corpus for modifying the initial sequence randomly.
To do this, first a random word is chosen for which the sense will be
changed. Then a sense is chosen for this word according to variant 1
explained earlier. SA variant 2 works similarly as D-Bees variant 2 by
adding the domain words to the sentence.

A comparison is given in Table 4 between the D-Bees and the
simulated annealing algorithms including the baselines for both
corpora. It can be observed that the D-Bees variant 1 performs better
than variant 2 on the text d004 unlike SA. This also contradicts the

Detection-Method Precision (%)
All Texts 44.56
Per Text 47.28

Table 2: Domain detection.

Figure 3: A comparison between the domain detection approaches. Figure 3: A comparison between the domain detection approaches.

Text Domain Frequency
6*[20] 2*en1 Narcotic 28

Biology 27
2*en2 River 10

Educational Activity 9
2*en3 Biology 48

Biological Science 48
2*[11] 2*d004 Computer Science 91

 Computing 91

 Table 3: The top-2 domain words per text.

http://dx.doi.org/10.4172/2229-8711.1000193

Page 6 of 7

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word Sense Disambiguation using the D-Bees Algorithm. Global J Technol
Optim 7: 193. doi:10.4172/2229-8711.1000193

Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

results on [20]. The reason might be that d004 is a coherent text in the
domain of computer science.

Figures 4 and 5 visualize the results. It is worth mentioning that the
results on d004 are obtained using the best parameters found by the ILS
parameter estimation method trained on a subset of the [20] corpus.

The results of D-Bees in comparison to SA divided by the text and
POS are visualized in Figure 6.

Comparison with other participating systems in [20] task 17

Eleven systems have participated in this task and submitted more
than thirty runs. The systems are classified in three categories based
on the way they trained or obtained the senses of the target words,
supervised, weakly supervised or knowledge-based systems. Below we
describe the systems with which we compare the D-Bees results [20]:

Treematch uses a knowledge-based method that requires a
dictionary and untagged text as an input.

Kyoto represents a free reimplementation of the WSD method
presented in [22].

CFILT is a specific domain knowledge-based system. The system
works by first identifying the domain dependent words using the
background dataset. Then the system selects the most representative
synsets within the domain using a graph based on the hyponyms in
WordNet and a breadth first search method. They have added manually
disambiguated examples from the domain as seeds. Their best run is
under the weakly supervised category and it was ranked first.

IIITTH is based on the personalized Page Rank algorithm over a
graph constructed from WordNet similar to [22].

RACAI uses a mapping to the domains provided by WordNet in
order to limit the domains of the words in the test set.

HIT-CIR estimates the predominant sense from the raw test. This
is done by calculating the frequency information in the background text.

• WS acquires information by querying the local context of a given
target word in the Web.

The sense is chosen based on the relatedness between the senses of
the target word and the information obtained from the Web.

Besides the first sense baseline, we compare the results of the
D-Bees algorithm variant 2 only with the participating knowledge-
based systems. The results in Table 5 are sorted in descending order
based on the recall values.

It can be observed that the D-Bees algorithm performs on par
with the top ranked knowledge-based systems, although both variants
of the D-Bees algorithm do not consider the background text in the
disambiguation process.

Algorithm Precision (%)
[20] task 17 [11] (d004)

First Sense 50.5 75.18
3*D-Bees Generic 48.93 76.07

Variant 1 47.28 81.5
Variant 2 50.00 75.33

3*SA Generic 24 68
Variant 1 25 69
Variant 2 40 71

Random Sense 23 60.71

Table 4: A comparison between the D-Bees and SA algorithms for specific domain.

Figure 4: A comparison between the D-Bees and SA algorithms on SemEval 2007: d004. Figure 4: A comparison between the D-Bees and SA algorithms on SemEval
2007: d004.

Figure 5: A comparison between the D-Bees and SA algorithms on SemEval 2010. Figure 5: A comparison between the D-Bees and SA algorithms on SemEval
2010.

Figure 6: The results on specific domain per text and POS.

Figure 6: The results on specific domain per text and POS.

http://dx.doi.org/10.4172/2229-8711.1000193

Page 7 of 7

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word Sense Disambiguation using the D-Bees Algorithm. Global J Technol
Optim 7: 193. doi:10.4172/2229-8711.1000193

Volume 7 • Issue 1 • 1000193
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

The D-Bees algorithm is adapted to the specific domain WSD in a
way similar to the DDD method described earlier [18]. However unlike
the DDD method, it scores a stable recall value. The reason is that
including the domain words in the disambiguation process favors the
domain relevant senses. This can be achieved in the D-Bees algorithm
because the semantic similarity function considers the sequence of
words at once.

During the disambiguation the definitions of the domain words
are included each time. Choosing next senses based on their usage
frequency is highly beneficial to disambiguate the domain labels that
lead the search to focus on the senses related to the domain.

Conclusion
In conclusion, the performance of the D-Bees algorithm is robust

to some extent and the algorithm can be adapted to the WSD for
specific domain with minor modifications. Based on the conducted
experiments, it can be inferred that the D-Bees algorithm performs
better than the simulated annealing.

Adjusting a WSD algorithm from general to specific domain starts
by detecting the domain in the dataset. Then the two variants that
are presented in this paper can be used to adapt any algorithm from
general to specific domain.

The D-Bees is comparable to the first sense baseline. However
the D-Bees algorithm takes the context into consideration and gives
a priority to the more frequent senses. Therefore, even if they perform
on par, the D-Bees algorithm can be improved unlike the first sense
baseline. As a future enhancement, the D-Bees algorithm should
consider the background texts to find more accurate domain words. It
is also possible to include some domain words manually once for the
whole dataset in order to cause a bias in sense selection.

References
1.	 Agirre E, Edmonds PG (2007) Word sense disambiguation: Algorithms and

applications.Springer Science & Business Media volume: 33.

2.	 Edmonds P (2005) Disambiguation, lexical. Encyclopedia of Language and
Linguistics. (2ndedn), Elsevier.

3.	 Nancy I, Véronis J (1998) Introduction to the special issue on word sense
disambiguation: the state of the art.Computational linguistics 24: 2-40.

4.	 Vickrey D, Biewald L, Teyssier M, Koller D (2005) Word-sense disambiguation
for machine translation. In Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

5.	 Sanderson M (1994) Word sense disambiguation and information retrieval.

In Proceedings of the 17th annual international ACM SIGIR conference on
Research and development in information retrieval. Springer-Verlag New York
Inc PP: 142-151.

6.	 Specia L, Jauhar SK, Mihalcea R (2012) Semeval-2012 task 1: English lexical
simplification. In Proceedings of the First Joint Conference on Lexical and
Computational Semantics-Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation. Association for Computational Linguistics
PP: 347-355.

7.	 Schütze H (1998) Automatic word sense discrimination.Computational
linguistics 24: 97-123.

8.	 Miller GA, Beckwith R, Fellbaum C, Gross D, Miller KJ (1990) Introduction to
wordnet: An on-line lexical database*. International journal of lexicography 3:
235-244.

9.	 Lesk M (1986) Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In Proceedings
of the 5th annual international conference on Systems documentation, ACM
PP: 24-26.

10.	Banerjee S, Pedersen T (2002) An adapted lesk algorithm for word sense
disambiguation using wordnet. In Computational linguistics and intelligent text
processing,Springer pp: 136-145.

11.	Navigli R, Litkowski KC, Hargraves O (2007) Semeval-2007 task 07: Coarse-
grained english all-words task. In Proceedings of the 4th International Workshop
on Semantic Evaluations. Association for Computational Linguistics pp: 30-35.

12.	Tahmasebi N, Risse T, Dietze S (2011) Towards automatic language evolution
tracking, a study on word sense tracking. In Joint Workshop on Knowledge
Evolution and Ontology Dynamics.784.

13.	Pedersen T, Banerjee S, Patwardhan S (2005) Maximizing semantic
relatedness to perform word sense disambiguation.University of Minnesota
supercomputing institute research report UMSI 25: 2005.

14.	Dorigo M, Stützle T (2004) Ant colony optimization. Bradford Company,
Scituate, MA, USA.

15.	Cowie J, Guthrie J, Guthrie L (1992) Lexical disambiguation using simulated
annealing. In Proceedings of the 14th conference on Computational linguistics-
Association for Computational Linguistics 1: 359-365.

16.	Abualhaija S, Zimmermann KM (2016) D-bees: A novel method inspired by
bee colony optimization for solving word sense disambiguation. Swarm and
Evolutionary Computation 27: 188-195.

17.	Dréo J, Siarr P, Pétrowski A, Taillard E (2006) Metaheuristics for hard
optimization. Springer-Verlag.

18.	Magnini B, Strapparava C, Pezzulo G, Gliozzo A (2002) The role of domain
information in word sense disambiguation.Natural Language Engineering 8:
359-373.

19.	Edmonds P, Cotton S (2001) Senseval-2: Overview. In the Proceedings of the
Second International Workshop on Evaluating Word Sense Disambiguation
Systems, SENSEVAL ’01, Stroudsburg, PA, USA. Association for Computational
Linguistics pp: 1-5.

20.	Agirre E, De Lacalle OL, Fellbaum C, Marchetti A, Toral A, et al. (2009)
Semeval-2010 task 17: All-words word sense disambiguation on a specific
domain. In Proceedings of the Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, Association for Computational Linguistics
pp: 123-128.

21.	Alsewan Z (2015) Auflösung von sprachlichen mehrdeutigkeiten für spezifische
dom en mittels simulated annealing. Bachelor thesis, Institute of Embedded
Systems, Hamburg University of Technology, Hamburg, Germany.

22.	Agirre E, Soroa A (2009) Personalizing pagerank for word sense disambiguation.
In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, Association for Computational
Linguistics pp: 33-41.

System Precision Recall R nouns R verbs
FS Baseline 0.505 0.505 0.519 0.464

D-Bees 0.500 0.500 0.5141 0.4605
CFILT-3 0.512 0.495 0.516 0.434

Treematch-1 0.506 0.493 0.516 0.426
Treematch-2 0.504 0.491 0.515 0.425

kyoto-2 0.481 0.481 0.487 0.462
Treematch-3 0.492 0.479 0.494 0.434
RACAI-MFS 0.461 0.460 0.458 0.464

UCF-WS 0.447 0.441 0.440 0.445
HIT-CIR-DMFS-1.ans 0.436 0.435 0.428 0.454

UCF-WS-domain 0.440 0.434 0.434 0.434
IIITH2-d.r.l.baseline.05 0.496 0.433 0.452 0.39

 Table 5: A comparison between the D-Bees algorithm and the knowledge-based
systems on [20] Task 17.

Citation: Abualhaija S, Zimmermann KH (2016) Solving Specific Domain Word
Sense Disambiguation using the D-Bees Algorithm. Global J Technol Optim 7:
193. doi:10.4172/2229-8711.1000193

http://dx.doi.org/10.4172/2229-8711.1000193
https://etda.libraries.psu.edu/paper/26764/30454
https://etda.libraries.psu.edu/paper/26764/30454
http://130.203.136.95/viewdoc/summary;jsessionid=0852524480759DC25D35DD775CC171F4?doi=10.1.1.455.7981
http://130.203.136.95/viewdoc/summary;jsessionid=0852524480759DC25D35DD775CC171F4?doi=10.1.1.455.7981
http://dl.acm.org/citation.cfm?id=972721
http://dl.acm.org/citation.cfm?id=972721
http://dl.acm.org/citation.cfm?id=1220575&picked=prox
http://dl.acm.org/citation.cfm?id=1220575&picked=prox
http://dl.acm.org/citation.cfm?id=1220575&picked=prox
http://dl.acm.org/citation.cfm?id=1220575&picked=prox
http://dl.acm.org/citation.cfm?id=188548
http://dl.acm.org/citation.cfm?id=188548
http://dl.acm.org/citation.cfm?id=188548
http://dl.acm.org/citation.cfm?id=188548
http://dl.acm.org/citation.cfm?id=2387692
http://dl.acm.org/citation.cfm?id=2387692
http://dl.acm.org/citation.cfm?id=2387692
http://dl.acm.org/citation.cfm?id=2387692
http://dl.acm.org/citation.cfm?id=2387692
http://dl.acm.org/citation.cfm?id=2387692
http://dl.acm.org/citation.cfm?id=972724
http://dl.acm.org/citation.cfm?id=972724
http://ijl.oxfordjournals.org/content/3/4/235.short
http://ijl.oxfordjournals.org/content/3/4/235.short
http://ijl.oxfordjournals.org/content/3/4/235.short
http://dl.acm.org/citation.cfm?id=318728
http://dl.acm.org/citation.cfm?id=318728
http://dl.acm.org/citation.cfm?id=318728
http://dl.acm.org/citation.cfm?id=318728
http://link.springer.com/chapter/10.1007/3-540-45715-1_11
http://link.springer.com/chapter/10.1007/3-540-45715-1_11
http://link.springer.com/chapter/10.1007/3-540-45715-1_11
http://dl.acm.org/citation.cfm?id=1621480
http://dl.acm.org/citation.cfm?id=1621480
http://dl.acm.org/citation.cfm?id=1621480
http://www.tahmasebi.se/papers/EvoDyn2011.pdf
http://www.tahmasebi.se/papers/EvoDyn2011.pdf
http://www.tahmasebi.se/papers/EvoDyn2011.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.6537&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.6537&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.6537&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1722490
http://dl.acm.org/citation.cfm?id=1722490
http://dl.acm.org/citation.cfm?id=992125
http://dl.acm.org/citation.cfm?id=992125
http://dl.acm.org/citation.cfm?id=992125
http://www.sciencedirect.com/science/article/pii/S221065021500098X
http://www.sciencedirect.com/science/article/pii/S221065021500098X
http://www.sciencedirect.com/science/article/pii/S221065021500098X
https://books.google.co.in/books?hl=en&lr=&id=l-acEfdFZ1MC&oi=fnd&pg=PA1&dq=17.%09Johann+Dr%C3%A9o,+Patrick+Siarry,+Alain+P%C3%A9trowski,+Eric+Taillard+(2006)+Metaheuristics+for+Hard+Optimization.Springer-Verlag.&ots=1JgtpSyd5t&sig=RA6QwFPuniJTrySMcrYAqoExxO0
https://books.google.co.in/books?hl=en&lr=&id=l-acEfdFZ1MC&oi=fnd&pg=PA1&dq=17.%09Johann+Dr%C3%A9o,+Patrick+Siarry,+Alain+P%C3%A9trowski,+Eric+Taillard+(2006)+Metaheuristics+for+Hard+Optimization.Springer-Verlag.&ots=1JgtpSyd5t&sig=RA6QwFPuniJTrySMcrYAqoExxO0
http://journals.cambridge.org/abstract_S1351324902003029
http://journals.cambridge.org/abstract_S1351324902003029
http://journals.cambridge.org/abstract_S1351324902003029
https://digital.lib.washington.edu/researchworks/handle/1773/23469
https://digital.lib.washington.edu/researchworks/handle/1773/23469
https://digital.lib.washington.edu/researchworks/handle/1773/23469
https://digital.lib.washington.edu/researchworks/handle/1773/23469
http://www.aclweb.org/anthology/W09-2420
http://www.aclweb.org/anthology/W09-2420
http://www.aclweb.org/anthology/W09-2420
http://www.aclweb.org/anthology/W09-2420
http://www.aclweb.org/anthology/W09-2420
http://www.aclweb.org/anthology/E09-1005
http://www.aclweb.org/anthology/E09-1005
http://www.aclweb.org/anthology/E09-1005
http://www.aclweb.org/anthology/E09-1005
http://dx.doi.org/10.4172/2229-8711.1000193

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Background
	The D-bees algorithm for general domain
	Simulated annealing for general domain
	Related work

	The D-Bees Algorithm for Specific Domain
	D-Bees variant 1: Domain information in choosing next synset
	D-Bees variant 2: Domain information per sentence

	Results and Analysis
	The dataset
	Domain detection
	Comparison with simulated annealing
	Comparison with other participating systems in [20] task 17

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	References

